Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Community science programs enable the collection of large amounts of important data and enhance the appreciation of science among members of the public. However, there are challenges in the establishment of successful community science programs.We report the challenges associated with the recent establishment of a community science program to monitor rare plants in the geographically diverse southern Illinois, USA region.Over the first 3 years, our program has been successful in the collection of over 250 monitoring records for rare species through the recruitment of a group of passionate volunteers. However, our volunteers are predominantly middle‐income, college educated, white females who are not representative of the population at large of the region. We propose a recruitment strategy to broaden the diversity of our volunteers by better engaging community members who are not typically involved with plant monitoring but are interested in hiking, walking in natural areas, gardening, and restoration activities, and others who would like the opportunity to collaborate with scientists and researchers in addressing an environmental issue.Practical implication: Community science plant monitoring programs face challenges in recruitment, retention, remoteness of field sites and data quality. Addressing these challenges through targeted recruitment strategies aimed at reducing structural and cultural barriers to participation, along with frequent program assessment, is necessary to enhance the success of these programs.more » « less
-
Anthropogenically fragmented populations may have reduced fitness due to loss of genetic diversity and inbreeding. The extent of such fitness losses due to fragmentation and potential gains from conservation actions are infrequently assessed together empirically. Controlled crosses within and among populations can identify whether populations are at risk of inbreeding depression and whether inter-population crossing alleviates fitness loss. Because fitness depends on the environment and life stage, studies quantifying cumulative fitness over a large portion of the lifecycle in conditions that mimic natural environments are most informative. To assess the fitness consequences of habitat fragmentation, we leveraged controlled within-family, within-population, and between-population crosses to quantify inbreeding depression and heterosis in seven populations of Echinacea angustifolia within a 6,400-ha area. We then assessed cumulative offspring fitness after 14 yr of growth in a natural experimental plot (N = 1,136). The mean fitness of progeny from within-population crosses varied considerably, indicating genetic differentiation among source populations, even though these sites are all less than 9 km apart. The fitness consequences of within-family and between-population crosses varied in magnitude and direction. Only one of the seven populations showed inbreeding depression of high effect, while four populations showed substantial heterosis. Outbreeding depression was rare and slight. Our findings indicate that local crossings between isolated populations yield unpredictable fitness consequences ranging from slight decreases to substantial increases. Interestingly, inbreeding depression and heterosis did not relate closely to population size, suggesting that all fragmented populations could contribute to conservation goals as either pollen recipients or donors.more » « less
-
Anthropogenically fragmented populations may have reduced fitness due to loss of genetic diversity and inbreeding. The extent of such fitness losses due to fragmentation and potential gains from conservation actions are infrequently assessed together empirically. Controlled crosses within and among populations can identify whether populations are at risk of inbreeding depression and whether interpopulation crossing alleviates fitness loss. Because fitness depends on environment and life stage, studies quantifying cumulative fitness over a large portion of the lifecycle in conditions that mimic natural environments are most informative. To assess fitness consequences of habitat fragmentation, we leveraged controlled within-family, within-population, and between-population crosses to quantify inbreeding depression and heterosis in seven populations of Echinacea angustifolia within a 6400-hectare area. We then assessed cumulative offspring fitness after 14 years of growth in a natural experimental plot (N = 1136). Mean fitness of progeny from within-population crosses varied considerably, indicating genetic differentiation among source populations, even though these sites are all less than 9 km apart. The fitness consequences of within-family and between-population crosses varied in magnitude and direction. Only one of the seven populations showed inbreeding depression of high effect, while four populations showed substantial heterosis. Outbreeding depression was rare and slight. Our findings indicate that local crossings between isolated populations yield unpredictable fitness consequences ranging from slight decreases to substantial increases. Interestingly, inbreeding depression and heterosis did not relate closely to population size, suggesting that all fragmented populations could contribute to conservation goals as either pollen recipients or donors.more » « less
-
Abstract Juvenile survival is critical to population persistence and evolutionary change. However, the survival of juvenile plants from emergence to reproductive maturity is rarely quantified. This is especially true for long‐lived perennials with extended pre‐reproductive periods. Furthermore, studies rarely have the replication necessary to account for variation among populations and cohorts. We estimated juvenile survival and its relationship to population size, density of conspecifics, distance to the maternal plant, age, year, and cohort forEchinacea angustifolia, a long‐lived herbaceous perennial. In 14 remnant prairie populations over seven sampling years, 2007–2013, we identified 886 seedlings. We then monitored these individuals annually until 2021 (8–15 years). Overall, juvenile mortality was very high; for almost all cohorts fewer than 10% of seedlings survived to age 8 or to year 2021. Only two of the seedlings reached reproductive maturity within the study period. Juvenile survival increased with distance from the maternal plant and varied more among the study years than it did by age or cohort. Juvenile survival did not vary with population size or local density of conspecific neighbors. Our results suggest that low juvenile survival could contribute to projected population declines.more » « less
An official website of the United States government
